
Security and Fault-tolerance in Distributed Systems ETHZ, Winter 2006/07
Christian Cachin, IBM Zurich Research Lab www.zurich.ibm.com/∼cca/

5 Consensus and Reliable Broadcast

5.1 Introduction
Consider a complete asynchronous network of n servers P = {P1, . . . , Pn}. Up to t servers
may fail by silently crashing (and they do not recover). A server that never crashes is called
correct. Every pair of servers is linked by a reliable point-to-point communication channel;
this means that when a correct server sends a message to another correct server, the latter will
eventually receive the message.

Coordination among the correct servers in this model has received a lot of attention. Many
relevant practical problems, such as atomic broadcast for state-machine replication or decen-
tralized atomic commit for database transactions, can be reduced to the problem of reaching
consensus.

5.2 Failure Detectors
Definition 5.1 (Failure Detector [CT96]). Every server Pi has a local failure detector module
Di that (periodically) outputs a list of servers that it suspects to have crashed. We say Pi

suspects Pj whenever j ∈ Di

A failure detector (FD) represents an abstraction of a timing assumption; a FD is described by
its abstract properties rather than through an implementation. We usually speak of “the” failure
detector D when every server has access to a local FD module Di with the properties of D;
note that the outputs of the modules at different servers may differ from each other.

Definition 5.2 (Completeness).

• A failure detector satisfies strong completeness if eventually every server that crashes is
permanently suspected by every correct server.

• A failure detector satisfies weak completeness if eventually every server that crashes is
permanently suspected by some correct server.

Completeness alone is trivial to satisfy and hence not useful.

Definition 5.3 (Accuracy).

• A failure detector satisfies strong accuracy if no server is suspected before it crashes.

• A failure detector satisfies weak accuracy if some correct server is never suspected.

Such failure detectors must never output false suspicions about any server (strong accuracy) or
about one particular server (weak accuracy). Therefore they are rather difficult to implement,
and one considers also the following relaxation.

1

Definition 5.4 (Eventual Accuracy).

• A failure detector satisfies eventual strong accuracy if there is a time after which no
correct server is suspected by any correct server.

• A failure detector satisfies eventual weak accuracy if there is a time after which some
correct server is never suspected.

A failure detector is characterized by a completeness and by an accuracy condition. Two no-
tions of completeness and four forms of accuracy define eight classes of FD:

accuracy
completeness eventually

strong weak strong weak
strong P S ♦P ♦S
weak Q W ♦Q ♦W

P is also called the [class of] “perfect,” S the [class of] “strong,” andW the [class of] “weak”
failure detectors; read ♦ as “eventually.”

Definition 5.5 (Reducibility). If there exists an algorithm that emulates all properties of a FD
D′ using only the output from a FD D, we say that D′ is reducible to D and that D′ is weaker
than D, written D′ ≤ D.

Similarly for classes of FD: if every FD in a class C ′ is reducible to a FD in a class C, we
say that C ′ is reducible to C and write C ′ ≤ C.

If D ≤ E and E ≤ D, then D and E are equivalent, written D ≡ E .

Trivially, we have Q ≤ P ,W ≤ S, etc.

Theorem 5.6. Weak and strong completeness are equivalent, i.e., P ≡ Q, S ≡ W , etc.

Proof. Reduce FD S with strong completeness to FD D with weak completeness as follows:
every Pi periodically sends the output of Di to all servers; when Pi receives such a message
with the output of Dj , it updates Si to Si ∪ Dj \ {Pj}.

5.3 Consensus
Consensus is defined in terms of two events, propose and decide; every server Pi executes
propose(v), where v is the value that Pi “proposes,” and every server Pi executes decide(v),
where v is the value for which Pi “decides.”

Definition 5.7 (Consensus). A consensus protocol satisfies:

Validity: If a server decides v, then v was proposed by some server.

Agreement: No two servers decide differently.

Termination: Every correct server eventually decides.

2

This actually defines uniform consensus, which means that the properties hold also for faulty
servers until they fail; in non-uniform consensus, agreement is restricted to the correct servers,
which is sometimes easier to achieve.

It is not possible to implement consensus strictly according Definition 5.7 in asynchronous
systems, even if t = 1 [FLP85]. Possible solutions are to use randomization or to make timing
assumptions. We defer the discussion of randomized solutions and discuss it in the context
of Byzantine agreement, and explore the use of timing assumptions encapsulated in a failure
detector next.

Algorithm 5.8 (Consensus using Failure Detector S or ♦S [MR99]). Every Pi has access
to a failure detector Di; Di is either in S or in ♦S for all servers. Pi executes the following
algorithm.

propose(v):
r ← 0 // current round
while not decided do

c← (r mod n) + 1 // current coordinator
u← ⊥ // value received from coordinator Pc or ⊥ if none
if i = c then

send message (propose, r, v) to all
wait for message (propose, r, v′) from Pc or c ∈ Di

if a message (propose, r, v′) was received then
u← v′

send message (vote, r, u) to all
wait for messages (vote, r, u′) from all Pj ∈ Q for some Q s.t.

Q = P \ Di with FD S
|Q| = dn+1

2
e with FD ♦S

U ← set of values u′ received in vote messages
if U = {u′} for some u′ 6= ⊥ then

send message (decide, u′) to all
else if U = {u′,⊥} then

v ← u′

r ← r + 1

upon receiving a message (decide, v′):
if not decided then

send the message (decide, v′) to all
decide(v′)

The algorithm uses the “rotating coordinator” paradigm and provides “early termination.” The
way in which the decidemessage is disseminated is a “reliable broadcast” that tolerates crash
failures (see Section 5.5).

Theorem 5.9. Algorithm 5.8 implements consensus with a strong failure detector (S) for n > t.

Proof idea. Let Pc be the correct server that is never suspected and let vc be its vote at begin of
round c. All correct servers will decide in round c. Note that c ≤ n.

Theorem 5.10. Algorithm 5.8 implements consensus with an eventually strong failure detector
(♦S) for n > 2t.

3

Proof idea. Agreement and termination are based on these facts:

• If two servers decide in the same round, then they decide the same value.

• Suppose some server decides v′ in round r. Then the value v′ is contained in the
propose message of round r and has been “locked” in the sense that it is not possi-
ble for any server in round r′ > r to decide u′ 6= v′ or to assign u′ 6= v′ to its v because
every two sets of dn+1

2
e servers intersect. (Such a set forms a “quorum.”)

• If some server decides, then every other server eventually decides (because it receives a
decide message).

• There is some round in which the coordinator Pc is not suspected by any server; all
correct servers decide in this round.

Combining Theorems 5.9 and 5.10 with Theorem 5.6 shows that consensus can also be imple-
mented using the weak failure detectorsW and ♦W . Moreover, it has been shown that ♦W is
the weakest failure detector that solves consensus in the sense of Definition 5.5 [CHT96].

Corollary 5.11. Consensus can be implemented in asynchronous systems with a weak failure
detector for n > t and with an eventually weak failure detector for n > 2t.

5.4 Non-Blocking Atomic Commit
At the end of a distributed computation, a group of servers runs a protocol to decide if the
computed state changes should be applied to their local state or the changes should be ignored.
For consistency of the application the protocol should guarantee that either all servers apply
the changes or none. This occurs, for example, in a distributed database system at the end of a
transaction; the property is called atomicity in the context of databases.

Every server may propose to commit or to abort the computation; if one server aborts, then
all others must also abort, otherwise they must commit. Some servers may fail (we assume
here that they never recover).

Hence, the non-blocking atomic commit problem is a variation of consensus with domain
{commit, abort} and the following notion of validity:

a) If some server proposes abort, then all servers must decide abort.

b) If all servers are correct and propose commit, then all servers must decide commit.

We use a perfect failure detector and a consensus primitive to implement non-blocking
atomic commit with the following algorithm:

1. Every server sends its proposed action, commit or abort, to all others.

2. When a server receives n messages indicating commit, it starts consensus and proposes
commit; otherwise, when the server receives at least one message that indicates abort or
when the server suspects some other server, it starts consensus and proposes abort.

3. Every server returns whatever the consensus protocol decides.

4

However, the database literature usually allows recoveries, which makes this a different prob-
lem. Practical database systems use a single transaction coordinator that implements the de-
cision [BHG87]; when the coordinator fails, the 2PC protocol blocks until the coordinator
recovers, and the 3PC protocol needs a complex and synchronous recovery procedure when
the backup coordinators fail as well. See also [BT93, GL06].

5.5 Broadcast
Our system model includes only point-to-point links for communication. If a server wants to
broadcast a message to all others, the server may crash during the operation and it is possible
that some servers receive a message but others don’t. The purpose of reliable broadcast and
its extensions is to prevent that. When additional ordering requirements are imposed (partial
orders such as FIFO and causal or total order), the problem becomes harder to solve. This
section is based on [HT93].

5.5.1 Reliable Broadcast

Reliable broadcast (RBC) requires that all correct servers deliver the same set of messages, and
that this set includes all messages broadcast by correct servers but no spurious messages. The
sender associated to a particular message is a distinguished server and its identity is assumed
to be known. Formally, RBC is characterized by two events r-broadcast(m), executed by the
sender to “r-broadcast” the message m, and r-deliver(m), executed by all servers when they
“r-deliver” m.

When multiple messages are broadcast, one may imagine that the servers run multiple
instances of a broadcast primitive. Every instance is associated with a unique identifier that is
also added to all messages generated by the protocol; since the sender is known, this identifier
may also include the identity of the sender.

Definition 5.12 (Reliable Broadcast). A protocol for reliable broadcast satisfies:

Validity: If a correct server r-broadcasts a message m, then it eventually r-delivers m.

Agreement: If a server r-delivers a message m, then all correct servers eventually r-deliver m.

Integrity: Every server delivers at most one message m, and only if m was previously broad-
cast by the associated sender.

Thus if the sender is faulty, either all servers deliver a message or none. This actually defines
uniform reliable broadcast; all other broadcasts in this section are also uniform.

Algorithm 5.13 (Reliable Broadcast). We consider the implementation of a single instance
(a protocol for broadcasting multiple messages is obtained in a straightforward way by aggre-
gating as many instances as there are messages). Let Ps denote the sender of the broadcast
instance; server Pi executes the following steps:

5

r-broadcast(m): // sender Ps only
send the message (send, m) to itself

upon receiving message (send, m):
if message m has not been r-delivered yet then

send the message (send, m) to all
r-deliver(m)

Although our network model assumes reliable point-to-point links between all servers, the
algorithm works even if every pair of correct servers is connected only via a path consisting
entirely of correct servers (in which case the statement “send to all” means “send to all directly
connected servers”). The following theorem is immediate.

Theorem 5.14. Algorithm 5.13 implements reliable broadcast for n > t.

5.5.2 FIFO Broadcast

When multiple messages are reliably broadcast concurrently, RBC does not guarantee anything
about the order in which the messages are delivered. One of the simplest orderings is provided
by FIFO broadcast, which guarantees that messages from the same sender are delivered in
the same sequence as they were broadcast by the sender; this does not affect messages from
different senders.

A protocol for FIFO broadcast is a protocol for reliable broadcast defined in terms of two
events f-broadcast and f-deliver that also satisfies:

FIFO Order: If a server f-broadcasts a message m before it f-broadcasts a message m′, then
no server f-delivers m′ unless it has previously f-delivered m.

Algorithm 5.15 (FIFO Broadcast from Reliable Broadcast). Given an implementation of
reliable broadcast, server Pi executes the following steps:

initialization:
M← [] // set of received but not f-delivered messages
s← 0 // Pi’s sequence number
nj ← 0 (∀j ∈ [1, n]) // next sequence number to be f-delivered from Pj

f-broadcast(m): // sender Ps only
r-broadcast the message (s, m)
s← s + 1

upon r-delivering (s′, m′) with sender Pj:
M←M∪ {(j, s′, m′)}
while ∃(j, t, m) ∈M such that t = nj do

f-deliver(m)
nj ← nj + 1

Theorem 5.16. Given a protocol for reliable broadcast, Algorithm 5.15 implements FIFO
broadcast.

6

5.5.3 Causal Broadcast

The causal precedence relation is an important concept in distributed computing. An event e
causally precedes f , written e → f , whenever the same server executes e before f , or when e
is the event of sending a message and f the event of receiving it, or if there is an event g such
that e→ g and g → f . Causal order is a specialization of FIFO order.

A protocol for causal broadcast is a protocol for reliable broadcast defined in terms of two
events c-broadcast and c-deliver that also satisfies:

Causal Order: The c-broadcast of a message m causally precedes the c-broadcast of a mes-
sage m′, then no server c-delivers m′ unless it has previously c-delivered m.

Algorithm 5.17 (Causal Broadcast from FIFO Broadcast). Given an implementation of
FIFO broadcast, server Pi executes the following steps:

initialization:
M ← ∅ // list of recently c-delivered messages

c-broadcast(m): // sender Ps only
f-broadcast the message (M‖m), where ‖ means to append an element m to a list M
M ← ⊥

upon f-delivering ([m1, m2, . . . ,ml]):
for k = 1, . . . , l do

if mk has not been c-delivered yet then
c-deliver(mk)
M ←M‖mk

Theorem 5.18. Given an implementation of FIFO broadcast, Algorithm 5.17 implements causal
broadcast.

5.5.4 Atomic Broadcast

FIFO and causal orders are partial orders. In particular, causal order does not impose anything
for two causally unrelated messages and it is possible that the servers deliver the messages in
different orders. Many applications do not allow such behavior because they must maintain a
consistent state at all servers; these applications require that the same state updates are executed
by all servers and that every server executes them in the same order. Such a total order is
provided by atomic broadcast.

A protocol for atomic broadcast is a protocol for reliable broadcast defined in terms of two
events a-broadcast and a-deliver that also satisfies:

Total Order: If two servers Pi and Pj both a-deliver messages m and m′, then Pi a-delivers m
before m′ if and only if Pj a-delivers m before m′.

Note that total order does not imply FIFO or causal order; hence, FIFO and causal broadcasts
are orthogonal to atomic broadcast, and it is possible to consider also FIFO atomic and causal
atomic broadcasts.

Implementing the total order property is considerably more difficult than the other orderings
considered before. In fact, atomic broadcast is as powerful as consensus and hence impossible
in asynchronous networks using deterministic protocols.

7

Theorem 5.19. Given a protocol for atomic broadcast, there is a protocol for consensus that
does not involve any additional messages.

Proof sketch. To propose a value v, a server uses the atomic broadcast protocol and a-broad-
casts v; then every server waits for the a-delivery of the first message v′ and decides for v′. The
agreement and total order properties of atomic broadcast imply agreement of consensus.

A convenient way to implement atomic broadcast is to use a consensus primitive. The atomic
broadcast algorithm below proceeds in global rounds; it uses one instance of consensus in every
round to agree on a set of messages, which are then delivered in a fixed order at the end of the
round.

Algorithm 5.20 (Atomic Broadcast from Consensus and Reliable Broadcast [CT96]). Given
an implementation of consensus and reliable broadcast, server Pi executes the following steps:

initialization:
R← ∅ // set of r-delivered messages
A ← ∅ // set of a-delivered messages
r ← 0 // round number

a-broadcast(m):
r-broadcast(m)

upon r-deliver(m):
R← R∪ {m}

repeat forever: // concurrently with the above statements
ifR \ A 6= ∅ then

propose(R \ A) in consensus r
wait for decide(S) of consensus r
a-deliver all messages in S \ A in some deterministic order
A ← A∪ S
r ← r + 1

Theorem 5.21. Given protocols for consensus and for reliable broadcast, Algorithm 5.20 im-
plements atomic broadcast.

Proof sketch. Validity follows from the validity of reliable broadcast and from the validity and
agreement of consensus (if a correct server a-broadcasts a message m, it is eventually con-
tained in the set R of every correct server) combined with the integrity of consensus (eventu-
ally, every set proposed in consensus contains m).

Agreement and total order are based on the following two facts. Let Br(i) denote the set
S \ A of server Pi in round r of the algorithm and suppose Pi and Pj are correct. Then:

• If Pi executes propose for consensus r, then Pj eventually executes propose for consen-
sus r.

• If Pi a-delivers all messages in Br(i), then Pi eventually a-delivers all messages in Br(i);
moreover, Br(i) = Br(j) for all r ≥ 0.

Corollary 5.22. Atomic broadcast and consensus are equivalent in asynchronous distributed
systems with reliable point-to-point links and crash failures.

8

5.5.5 Summary

reliable
broadcast broadcast

atomic

broadcast
FIFO

broadcast
FIFO atomic

broadcastbroadcast
causal causal atom.

total order

FIFO order

causal order

Relations among the broadcast primitives [HT93].

References

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and recovery
in database systems, Addison-Wesley, 1987.

[BT93] Ö. Babaoglu and S. Toueg, Non-blocking atomic commitment, Distributed Systems
(S. J. Mullender, ed.), ACM Press & Addison-Wesley, New York, 1993.

[CHT96] T. D. Chandra, V. Hadzilacos, and S. Toueg, The weakest failure detector for solving
consensus, Journal of the ACM 43 (1996), no. 4, 685–722.

[CT96] T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed
systems, Journal of the ACM 43 (1996), no. 2, 225–267.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed consen-
sus with one faulty process, Journal of the ACM 32 (1985), no. 2, 374–382.

[GL06] J. Gray and L. Lamport, Consensus on transaction commit, ACM Transactions on
Database Systems 31 (2006), no. 1, 133–160.

[HT93] V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and related problems, Dis-
tributed Systems (S. J. Mullender, ed.), ACM Press & Addison-Wesley, New York,
1993, Expanded version appears as Technical Report TR94-1425, Department of
Computer Science, Cornell University, Ithaca NY, 1994.

[MR99] A. Mostfaoui and M. Raynal, Solving consensus using Chandra-Toueg’s unreliable
failure detectors: A general quorum-based approach, Proc. 13th International Sym-
posium on Distributed Computing (DISC) (P. Jayanti, ed.), Lecture Notes in Com-
puter Science, vol. 1693, Springer, 1999.

9

