Using logic to specify and verify programs

Jonathan P. Bowen

www.cs.ucl.ac.uk/staff/J.Bowen/GS03
Overview

• Background
• Core programming language
• Hoare triples $\langle \phi \rangle P \langle \psi \rangle$
• Partial correctness \models_{par}
• Total correctness \models_{tot}
• Proof rules for partial correctness
Verification method (1)

- **Proof-based** – construct a proof rather than exhaustively check state (cf. model checking).

- **Semi-automatic** – many steps mechanical but some need intelligence (e.g., up to 95% automatic in practice).

- **Proof-oriented** – verify program properties rather than full specification of the behaviour.
Verification method (2)

- **Application domain** – sequential transformational programs (no concurrency, takes input and produces output).
- **Pre/post-development** – use during development for small critical sections of code.
Motivation

- **Documentation** – formal specification is an important part of the documentation (if available!)
- **Time-to-market** – testing is expensive and time-consuming; a formal spec helps reduce testing time/cost
- **Refactoring** – a formal spec can help with reuse (since we know what the program does)
- **Certification audits** – a verification proof might be part of the warranty for critical software
Software verification framework

• Convert informal requirements R into an “equivalent” logical formula ϕ_R.
• Write a program P designed to implement ϕ_R in the available programming environment.
• Prove that program P satisfies the formula ϕ_R in some logical framework.
Problems

- Some constraints may be design decisions (e.g., interfaces, data types)
- The specification may evolve over time
- The specification may be incomplete (especially for larger projects)
- Formalizing R may lead to revisions due to ambiguities & undesirable consequences
- The process of relating R and ϕ_R is necessarily informal
<table>
<thead>
<tr>
<th>Level</th>
<th>Name</th>
<th>Involves</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Formal Specification</td>
<td>Formal notation used for specifying requirements only; no analysis/proof</td>
</tr>
<tr>
<td>1</td>
<td>Formal Development / Verification</td>
<td>Proving properties and applying refinement calculus</td>
</tr>
<tr>
<td>2</td>
<td>Machine Checked Proofs / Model checking</td>
<td>Use of theorem prover/checker tool to prove consistency/integrity.</td>
</tr>
</tbody>
</table>
Cost of proofs

- Mathematics – simple theorems, deep proofs (decades or centuries)
- Cf. software – complicated specs & programs, shallow proofs (B, 90–95% automated, 5–10% manual, weeks or months).

Fermat’s Last Theorem (in Toulouse)
\[a^n + b^n \neq c^n \quad (n>2) \]

— Pierre de Fermat (1601–1635)
Hand vs. machine checked proofs

Blackboard at workshop!
Overview

• Background

• **Core programming language**

• Hoare triples \(\langle \phi \rangle P \langle \psi \rangle \)

• Partial correctness \(\vdash_{\text{par}} \)

• Total correctness \(\vdash_{\text{tot}} \)

• Proof rules for partial correctness
Core programming language (1)

Integer expressions:

- \(E ::= n \mid x \mid (–E) \mid (E + E) \mid (E – E) \mid (E * E) \)

- \(n \) is an integer \(\{…, –2, –1,0,1,2,… \} \) (set \(A \))

- \(x \) is any variable (\(\text{var} \))

- – negation binds most tightly, then
 * multiplication, then – subtraction and + addition
Core programming language (2)

Boolean expressions:

- $B ::= \text{true} \mid \text{false} \mid (! B) \mid (B \& B) \mid (B \| B) \mid (E < E)$
- $!$ is negation, $\&$ is conjunction, $\|$ is disjunction
- Can be expanded with macro style operators ("syntactic sugar"). E.g.:

 $E_1 == E_2 \equiv !(E_1 < E_2) \& !(E_2 < E_1)$

 $E_1 != E_2 \equiv !(E_1 == E_2)$
Core programming language (3)

Commands:

• \[C ::= x = E \mid C ; C \mid \text{if } B \{ C \} \ \text{else } \{ C \} \mid \text{while } B \{ C \} \]

• \{…\} marks blocks of code

• \(x = E \) - assignment (atomic command)

• \(C_1 ; C_2 \) - sequential composition
 First \(C_1 \) is executed, then if it terminates \(C_2 \)

• \(\text{if } B \{ C_1 \} \ \text{else } \{ C_2 \} \) - conditional
 If \(B \) evaluates to true, \(C_1 \) is executed, otherwise \(C_2 \)

• \(\text{while } B \{ C \} \) - iteration
 If \(B \) evaluates to false, the command terminates, otherwise \(C \) is executed and the command is repeated
Example

Factorial $x!$ of a natural number (defined by induction):

$$0! \equiv 1$$

$$(x + 1)! \equiv (x + 1) \cdot x!$$

Program **Fac1** (on termination, $y = x!$):

```plaintext
y = 1;
z = 0;
while (z != x) {
    z = z + 1;
    y = y * z
}
```
Overview

• Background
• Core programming language

• Hoare triples $\langle \phi \rangle \ P \ \langle \psi \rangle$

• Partial correctness \vdash_{par}
• Total correctness \vdash_{tot}
• Proof rules for partial correctness
Hoare triples

\((\phi) \ P \ (\psi)\)

If the program \(P\) is run in a state that satisfies \(\phi\), then the state resulting from \(P\)’s execution will satisfy \(\psi\).

\(\phi\) – precondition (assumption)

\(\psi\) – postcondition (guarantee)

\(\phi\) and \(\psi\) are predicates or “assertions”.

They specify the program behaviour.

Concept named after Tony Hoare (aka Hoare logic).
Example

$$\{ x > 0 \} \ P \ { y \cdot y < x \}$$

Calculates a number y whose square is less than x.

Note that there is no guarantee if $x \leq 0$ (the program can do anything, it may not even terminate).
Definition – Hoare triple \((\phi) \ P \ (\psi) \)

\(\phi \) is the precondition of \(P \).
\(\psi \) is the postcondition of \(P \).

The state is a function \(l \) from variables to integers \((l : \text{var} \rightarrow A)\).

A state \(l \) satisfies \(\phi \) (\(l \) is a \(\phi \)-state or \(l \models \phi \)) iff \(M \models_l \phi \) (model \(M \) satisfies formula \(\phi \) in environment \(l \) – see slide 22 of week1 lecture 3) where \(M \) has as set \(A \) all integers.

Note: variables bound by quantifiers in \(\phi \) and \(\psi \) must not occur in \(P \).
State examples

For state \(l \) including \(\{x \mapsto -2, \ y \mapsto 5, \ z \mapsto -1\} \),
do the following hold?

\[
l \models \neg(x + y < z)
\]
\[
l \models y - x \cdot z < z
\]
\[
l \models \forall u (y < u \Rightarrow y \cdot z < u \cdot z)
\]

Holds since \(x + y = 3 \) and \(z = -1 \)

Does not hold since LHS = 3

Does not hold; e.g., \(u = 6 \)
Program examples

Do the following hold?

\[
\{ x > 0 \} \ y = 0 \{ y \cdot y < x \}
\]

\[
\{ x > 0 \}
\]

\[
y = 0;
\]

\[
\text{while} \ (y \cdot y < x) \ \{ \ y = y+1 \ \};
\]

\[
y = y-1
\]

\[
\{ y \cdot y < x \}
\]
Program examples (2)

\[(x > 0) \; y = 0 \; (y \cdot y < x) \]

\(y \cdot y \) is 0 in the postcondition since \(y = 0 \).
Since \(x > 0 \) in the precondition,
\(y \cdot y < x \) holds after the program.
This is not a very useful program.
Note that the specification is non-deterministic.
Different programs can satisfy the same spec.
Program examples (3)

\(\{ x > 0 \} \)

\[y = 0; \text{while } (y \cdot y < x) \{ y = y+1 \}; y = y-1 \]

\(\{ y \cdot y < x \} \)

This finds the greatest \(y \) whose square is less than \(x \).

Can you think of a stronger postcondition to specify this more exactly?
Proof of correctness?

• We can reason about such programs informally
• In fact, programmers (should) do this all the time
• But what if we want a formal proof?
• We can do proofs in propositional/predicate logic 😊
• E.g., to prove $\phi \Rightarrow \psi$, assume ϕ and show ψ holds
• Now we have triples, logical formulas ϕ and ψ, and a piece of code P
• We want “compositional” proofs over P’s structure
• Very important for larger proofs (e.g., with subroutines)
Overview

• Background
• Core programming language
• Hoare triples $\langle \phi \rangle P \langle \psi \rangle$

• **Partial correctness** \models_{par}
• **Total correctness** \models_{tot}
• Proof rules for partial correctness
Partial correctness (1)

• For $\langle \phi \rangle P \langle \psi \rangle$ what should happen when P does not terminate (e.g., an infinite loop)?

• Under “partial correctness”, $\langle \phi \rangle P \langle \psi \rangle$ is satisfied if, for all states that satisfy ϕ, the state resulting from P’s execution satisfies ψ, provided P terminates.

• I.e., $\models_{\text{par}} \langle \phi \rangle P \langle \psi \rangle$ holds, where \models_{par} is the satisfaction relation for partial correctness.
Partial correctness (2)

- Partial correctness is a rather weak requirement.
- Any program that does not terminate satisfies its specification.
- E.g., `while true { skip }` (where `skip ≡ x=x` for any variable `x`) never terminates and this satisfies all partial correctness specs.
- Solution: “total correctness”.

Overview

• Background
• Core programming language
• Hoare triples $\langle \phi \rangle P \langle \psi \rangle$
• Partial correctness \models_{par}
 • **Total correctness** \models_{tot}
• Proof rules for partial correctness
Total correctness (1)

Under “total correctness”, $\langle \phi \rangle P \langle \psi \rangle$ is satisfied if, for all states that satisfy ϕ, the state resulting from P’s execution satisfies ψ, and P is guaranteed to terminate.

I.e., $\models_{\text{tot}} \langle \phi \rangle P \langle \psi \rangle$ holds, where \models_{tot} is the satisfaction relation for total correctness.

A program that loops forever for all inputs cannot satisfy any valid spec under total correctness.
Total correctness (2)

• Total correctness is of more practical use than partial correctness.
• So why have partial correctness?
• Often it is easier to prove partial correctness first and then prove termination.

• **Hint:** This is a good strategy for proving program correctness. 😊
Example (1)

Consider a program \textbf{Succ}:
\begin{verbatim}
a = x+1;
if (a–1 == 0) {
 y = 1
} else {
 y = a
}
\end{verbatim}

Consider a spec \(\top \) \textbf{Succ} \(\left(y = x+1 \right) \)

(Note that \(\top \) indicates the true predicate)
Example (2)

\[a = x+1; \text{if } (a-1 == 0) \{y = 1\} \text{ else } \{y = a\}\]

\[\top\quad \textbf{Succ} \quad (y = x+1)\]

Is this satisfied under:

1. Partial correctness?
2. Total correctness?

Note there are no loops in the program.

With \(x\) as the input and \(y\) as the output, this is a rather roundabout successor function.
Example (3) – Fac1 program

\[y = 1; \quad z = 0; \]
\[\text{while} \ (z != x) \ \{ \ z = z + 1; \quad y = y \times z \ \} \]

When does this terminate?

Which of the following hold?

\(\models_{\text{par}} \left(x \geq 0 \right) \text{Fac1} \left(y = x! \right) \)

\(\models_{\text{par}} \left(\top \right) \text{Fac1} \left(y = x! \right) \)

\(\models_{\text{tot}} \left(x \geq 0 \right) \text{Fac1} \left(y = x! \right) \)

\(\models_{\text{tot}} \left(\top \right) \text{Fac1} \left(y = x! \right) \)
Soundness and completeness (1)

If the partial correctness of $\langle \phi \rangle P \langle \psi \rangle$ can be proved using partial-correctness calculus, the sequent $\vdash_{\text{par}} \langle \phi \rangle P \langle \psi \rangle$ is valid.

Similarly for total correctness.
Soundness and completeness (2)

\[\vdash_{\text{par}} (\phi) \quad P (\psi) \quad \text{holds whenever} \quad \not\vdash_{\text{par}} (\phi) \quad P (\psi) \quad \text{is valid.} \]

\[\vdash_{\text{con}} (\phi) \quad P (\psi) \quad \text{is valid whenever} \quad \vdash_{\text{con}} (\phi) \quad P (\psi) \quad \text{holds.} \]

\[\vdash_{\text{tot}} (\phi) \quad P (\psi) \quad \text{holds whenever} \quad \not\vdash_{\text{tot}} (\phi) \quad P (\psi) \quad \text{is valid.} \]

\[\vdash_{\text{tot}} (\phi) \quad P (\psi) \quad \text{is valid whenever} \quad \vdash_{\text{tot}} (\phi) \quad P (\psi) \quad \text{holds.} \]
Example – Fac2

Consider an alternative program:

\[y = 1; \text{while } (x \neq 0) \{ y = y \times x; x = x - 1 \} \]

Note that \(x \) is “consumed” (destroyed).

We need to remember the initial value – use logical variable \(x_0 \) to record this value.

\[\{ x = x_0 \land x \geq 0 \} \quad \text{Fac2} \quad \{ y = x_0! \} \]

\(x_0 \) does not occur in \text{Fac2} & cannot be modified by it.
Example – Sum

Consider:

\[z = 0; \text{while} \ (x > 0) \ {\{z = z + x; \ x = x - 1\}} \]

\[0+1+2+\ldots+n = \frac{n \cdot (n+1)}{2} \text{ (by induction)} \]

What is a spec for this program?
Logical variables

• Variables like x_0 are *logical variables* because they only occur in the logical formulas (precondition and postcondition).

• For a Hoare triple $\langle \phi \rangle \ P \ \langle \psi \rangle$ the set of logical variables are those that are free in ϕ or ψ, and not occurring in P.
Overview

• Background
• Core programming language
• Hoare triples \([\phi] P [\psi] \)
• Partial correctness \(\vdash_{\text{par}} \)
• Total correctness \(\vdash_{\text{tot}} \)

• Proof rules for partial correctness
Proof calculus – partial correctness

- Proof calculus of R. Floyd and C. A. R. Hoare
- See summary on page 270 of Huth & Ryan book
- Proof rules:

\[(φ) \quad C_1 \quad (η) \quad (η) \quad C_2 \quad (ψ) \]

Composition

\[(φ) \quad C_1 ; C_2 \quad (ψ) \]

The postcondition of the code fragment \(C_1 \) is the same as the precondition of \(C_2 \).

\(η \) is an intermediate midcondition.
Proof rule: Assignment (1)

• No premises – \(\therefore \) an axiom of the logic.

• \(\psi [E/x] \) has all free occurrences of \(x \) replaced with \(E \).

\[
\begin{align*}
\text{Assignment} \\
\langle \psi [E/x] \rangle & \quad x = E \quad \langle \psi \rangle
\end{align*}
\]

This rule is best applied backwards from the postcondition.
Proof rule: Assignment (2)

- The rule can be applied completely mechanically (unlike while for example).
- Unproblematic provided pre/postconditions quantify over logical variables only — recommended!
- Why not use $\phi(x = E \phi[E/x])$?
- Consider if ϕ is $x = 6$ and E is 5, for example.
- The assignment “$x = 5$” should give a postcondition of $x = 5$, but $\phi[E/x]$ is the formula $5 = 6$, which is the same as \bot (i.e., false).
Proof rule: Assignment (3)

Suppose P is “$x = 2$”. Do the following hold?

- $\begin{align*} 2 = 2 \end{align*} \quad \begin{align*} 2 = 2 \end{align*} \quad P \quad \begin{align*} x = 2 \end{align*}$
- $\begin{align*} 2 = 4 \end{align*} \quad \begin{align*} 2 = 4 \end{align*} \quad P \quad \begin{align*} x = 4 \end{align*}$
- $\begin{align*} 2 = y \end{align*} \quad \begin{align*} 2 = y \end{align*} \quad P \quad \begin{align*} x = y \end{align*}$
- $\begin{align*} 2 > 0 \end{align*} \quad \begin{align*} 2 > 0 \end{align*} \quad P \quad \begin{align*} x > 0 \end{align*}$

Note: These are all instances of the axiom.

In general, $\begin{align*} \bot \end{align*} \quad \begin{align*} x = E \end{align*} \quad \begin{align*} \psi \end{align*}$ — why?

$\begin{align*} \psi [E/x] \end{align*} \quad \begin{align*} x = E \end{align*} \quad \begin{align*} \psi \end{align*}$
Proof rule: Assignment (4)

Suppose P is "$x = x+1$". Do the following hold?

• $\langle x+1 = 2 \rangle \ P \ \langle x = 2 \rangle$
• $\langle x+1 = y \rangle \ P \ \langle x = y \rangle$
• $\langle x+1+5 = y \rangle \ P \ \langle x+5 = y \rangle$
• $\langle x+1 > 0 \land y > 0 \rangle \ P \ \langle x > 0 \land y > 0 \rangle$

Note: These are also all instances of the axiom. Preconditions obtained from this rule can often be simplified further for readability.

$\langle \psi [E/x] \rangle \ x = E \ (\psi)$
Proof rule: If-statements

- Split into two sub-goals for the B and $\neg B$ cases.
- Knowledge of B and $\neg B$ is typically crucial in the sub-proofs since ϕ is normally unrelated.

\[
\begin{align*}
(\phi \land B) & \quad C_1 & \quad (\psi) & \quad (\phi \land \neg B) & \quad C_2 & \quad (\psi)
\end{align*}
\]

If-statement

\[
(\phi) \text{ if } B \{ C_1 \} \text{ else } \{ C_2 \} (\psi)
\]

- The postcondition of the code fragment C_1 is the same as that for C_2.
Proof rule: While-statements

• Arguably the most complicated rule (despite initial appearances) because of looping.
• Number of times of looping is difficult to predict.

\[
\begin{align*}
&\langle \psi \land B \rangle \quad C \quad \langle \psi \rangle \\
\hline
&\langle \psi \rangle \quad \text{while} \quad B \quad \{C\} \quad \langle \psi \land \neg B \rangle
\end{align*}
\]

Partial-while

• The critical component is the “invariant” \(\psi \), which must be true at the start and end of execution of \(C \), and must normally be determined manually (using intelligence!).
Proof rule: Implied

• Precondition strengthened (assume more).
• Postcondition weakened (conclude less).

• Sequent $\vdash_{\text{AR}} \phi' \Rightarrow \phi$ is valid iff there is a natural deduction predicate calculus (+ arithmetic) proof

\[\vdash_{\text{AR}} \phi' \Rightarrow (\phi) \quad C \quad (\psi) \quad \vdash_{\text{AR}} (\psi) \Rightarrow \psi' \quad \text{Implied} \]

\[(\phi') \quad C \quad (\psi') \]

• Acts as a link between predicate logic and program logic.
Hoare logic summary

• Core programming language
• Hoare triples: $\langle \phi \rangle P \langle \psi \rangle$
• Partial/total correctness: \vdash_{par} and \vdash_{tot}
• Simple set of partial correctness proof rules
• However, not easy to use in program examples in this form
• Next: consider program proofs (verification)
Conclusion

• This week:
 – Using logic to specify programs
 – Using logic to verify programs

• Next week:
 – Static analysis
 – JML (Java Modeling Language)
 – ESC/Java2 tool
 – Conclusion (state of the art)
Reading and exercises

• Read Chapter 4 of Huth and Ryan up to section 4.3.1.

• Do questions 1-4 of the book’s online tutor for Chapter 4 under

• Do selected (starred) exercises:
 – 4.1: 1; 4.2: 1, 2; 4.3: 1(a,c), 2